哈希摘要算法

前言

最近在看一些NPM库的时候总是看到各种哈希签名算法,之前工作中也有用到过签名算法,但并没有深入理解过其中的原理,于是找了点资料稍微了解了一下,总结了这篇文章。

哈希摘要算法

哈希函数(也称散列函数),是一种根据任意长度数据计算出固定签名长度的算法,比如MD5,SHA系列。

哈希签名摘要算法特点

  • 不是加密算法,而是一种摘要算法
  • 不可逆,“单向”函数
  • 签名长度固定
  • 存在2的N次方种结果,N表示签名长度

以MD5为例

MD5是由美国密码学家罗纳德·李维斯特(Ronald Linn Rivest)设计一种加密算法。

  • 128个bits长度,也就是16个字节
  • 输出结果由为“0-F”字符组成,不区分大小写
  • 存在2的128次方种输出结果

MD5算法

一、源数据处理

计算原文长度(bits)对512求余的结果,需要填充原文使得原文对512求余的结果等于448, 填充的方法是第一位填充1,其余位填充0。填充完后,信息的长度为512 * N + 448。

剩余64bits存储空间用来填充源信息长度,填充在448byte 数据之后。

最终经过处理后的数据长度为 512 * N。

动手画了一张简单的图来说明:

示意图)

二、处理数据

1、数据进行处理前,会定义4个常量,作为初始值
这4个常量分别是

1
2
3
4
var a = 0x67452301;
var b = 0xEFCDAB89;
var c = 0x98BADCFE;
var d = 0x10325476;

翻译成二进制就是

1
2
3
4
var a =  1732584193;
var b = -271733879;
var c = -1732584194;
var d = 271733878;

2、将处理后的数据,外循环处理N次,N为第一步中512的整数倍。
每次外循环处理的会产生新的“a、b、c、d”值,每次新产生的“a、b、c、d”值会再一次提供给下一次外循环使用

3、在每个外循环中又进行内循环处理64次,在这64次数据处理中会不停的将 512 bytes 数据中的 16个小单元不停的通过4个函数进行交叉处理,共计进行64轮计算。

4、最终生成新的“a、b、c、d”,新的“a、b、c、d”分别是占用32bytes的数据

5、最终生成的“a、b、c、d”转换为对应的ascll占用的字节,32 bytes * 4 = 128 bytes, 一个字节占用8个bytes, 也就是16个字节,16个字节转换为ASCII码,再将ASCII码转换为16进制数据,即可得到一个32个字节长度的hash值。

内外循环代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
function binl_md5(x, len) {
/* append padding */
x[len >> 5] = x[len >> 5] | 0x80 << (len % 32);
x[(((len + 64) >>> 9) << 4) + 14] = len;

var i, olda, oldb, oldc, oldd,
a = 1732584193,
b = -271733879,
c = -1732584194,
d = 271733878;

// 每次计算位移值,可以理解为是常量
var ffShift = [7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22];
var ggShift = [5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20];
var hhShift = [4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23];
var iiShift = [6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21];

// Todo: 四个字节一组,每个组别之间不停的交叉计算,不停的根据已计算出来的值多次计算赋值
// x[i]装的是4个字节的数据
// x.length 为 512 * N / 32
// i += 16 每512bits长度的数据分为了16组,而每次循环的计算单位是以512为一个单元的,所以每次都是+16
for (i = 0; i < x.length; i += 16) {
olda = a;
oldb = b;
oldc = c;
oldd = d;

// 64轮计算中包含原始“a、b、c、d”值。
// 以及位移值,以及一个计算常量,这两个是MD5规范中所定义的常量
a = md5_ff(a, b, c, d, x[i], ffShift[0], -680876936);
d = md5_ff(d, a, b, c, x[i + 1], ffShift[1], -389564586);
c = md5_ff(c, d, a, b, x[i + 2], ffShift[2], 606105819);
b = md5_ff(b, c, d, a, x[i + 3], ffShift[3], -1044525330);
a = md5_ff(a, b, c, d, x[i + 4], ffShift[4], -176418897);
d = md5_ff(d, a, b, c, x[i + 5], ffShift[5], 1200080426);
c = md5_ff(c, d, a, b, x[i + 6], ffShift[6], -1473231341);
b = md5_ff(b, c, d, a, x[i + 7], ffShift[7], -45705983);
a = md5_ff(a, b, c, d, x[i + 8], ffShift[8], 1770035416);
d = md5_ff(d, a, b, c, x[i + 9], ffShift[9], -1958414417);
c = md5_ff(c, d, a, b, x[i + 10], ffShift[10], -42063);
b = md5_ff(b, c, d, a, x[i + 11], ffShift[11], -1990404162);
a = md5_ff(a, b, c, d, x[i + 12], ffShift[12], 1804603682);
d = md5_ff(d, a, b, c, x[i + 13], ffShift[13], -40341101);
c = md5_ff(c, d, a, b, x[i + 14], ffShift[14], -1502002290);
b = md5_ff(b, c, d, a, x[i + 15], ffShift[15], 1236535329);

a = md5_gg(a, b, c, d, x[i + 1], ggShift[0], -165796510);
d = md5_gg(d, a, b, c, x[i + 6], ggShift[1], -1069501632);
c = md5_gg(c, d, a, b, x[i + 11], ggShift[2], 643717713);
b = md5_gg(b, c, d, a, x[i], ggShift[3], -373897302);
a = md5_gg(a, b, c, d, x[i + 5], ggShift[4], -701558691);
d = md5_gg(d, a, b, c, x[i + 10], ggShift[5], 38016083);
c = md5_gg(c, d, a, b, x[i + 15], ggShift[6], -660478335);
b = md5_gg(b, c, d, a, x[i + 4], ggShift[7], -405537848);
a = md5_gg(a, b, c, d, x[i + 9], ggShift[8], 568446438);
d = md5_gg(d, a, b, c, x[i + 14], ggShift[9], -1019803690);
c = md5_gg(c, d, a, b, x[i + 3], ggShift[10], -187363961);
b = md5_gg(b, c, d, a, x[i + 8], ggShift[11], 1163531501);
a = md5_gg(a, b, c, d, x[i + 13], ggShift[12], -1444681467);
d = md5_gg(d, a, b, c, x[i + 2], ggShift[13], -51403784);
c = md5_gg(c, d, a, b, x[i + 7], ggShift[14], 1735328473);
b = md5_gg(b, c, d, a, x[i + 12], ggShift[15], -1926607734);

a = md5_hh(a, b, c, d, x[i + 5], hhShift[0], -378558);
d = md5_hh(d, a, b, c, x[i + 8], hhShift[1], -2022574463);
c = md5_hh(c, d, a, b, x[i + 11], hhShift[2], 1839030562);
b = md5_hh(b, c, d, a, x[i + 14], hhShift[3], -35309556);
a = md5_hh(a, b, c, d, x[i + 1], hhShift[4], -1530992060);
d = md5_hh(d, a, b, c, x[i + 4], hhShift[5], 1272893353);
c = md5_hh(c, d, a, b, x[i + 7], hhShift[6], -155497632);
b = md5_hh(b, c, d, a, x[i + 10], hhShift[7], -1094730640);
a = md5_hh(a, b, c, d, x[i + 13], hhShift[8], 681279174);
d = md5_hh(d, a, b, c, x[i], hhShift[9], -358537222);
c = md5_hh(c, d, a, b, x[i + 3], hhShift[10], -722521979);
b = md5_hh(b, c, d, a, x[i + 6], hhShift[11], 76029189);
a = md5_hh(a, b, c, d, x[i + 9], hhShift[12], -640364487);
d = md5_hh(d, a, b, c, x[i + 12], hhShift[13], -421815835);
c = md5_hh(c, d, a, b, x[i + 15], hhShift[14], 530742520);
b = md5_hh(b, c, d, a, x[i + 2], hhShift[15], -995338651);

a = md5_ii(a, b, c, d, x[i], iiShift[0], -198630844);
d = md5_ii(d, a, b, c, x[i + 7], iiShift[1], 1126891415);
c = md5_ii(c, d, a, b, x[i + 14], iiShift[2], -1416354905);
b = md5_ii(b, c, d, a, x[i + 5], iiShift[3], -57434055);
a = md5_ii(a, b, c, d, x[i + 12], iiShift[4], 1700485571);
d = md5_ii(d, a, b, c, x[i + 3], iiShift[5], -1894986606);
c = md5_ii(c, d, a, b, x[i + 10], iiShift[6], -1051523);
b = md5_ii(b, c, d, a, x[i + 1], iiShift[7], -2054922799);
a = md5_ii(a, b, c, d, x[i + 8], iiShift[8], 1873313359);
d = md5_ii(d, a, b, c, x[i + 15], iiShift[9], -30611744);
c = md5_ii(c, d, a, b, x[i + 6], iiShift[10], -1560198380);
b = md5_ii(b, c, d, a, x[i + 13], iiShift[11], 1309151649);
a = md5_ii(a, b, c, d, x[i + 4], iiShift[12], -145523070);
d = md5_ii(d, a, b, c, x[i + 11], iiShift[13], -1120210379);
c = md5_ii(c, d, a, b, x[i + 2], iiShift[14], 718787259);
b = md5_ii(b, c, d, a, x[i + 9], iiShift[15], -343485551);

a = safe_add(a, olda);
b = safe_add(b, oldb);
c = safe_add(c, oldc);
d = safe_add(d, oldd);
}
// 最终生成4个占用32 bytes控制的值
return [a, b, c, d];
}

四轮计算线性函数

1
2
3
4
F(X,Y,Z) =(X&Y)|((~X)&Z) 
G(X,Y,Z) =(X&Z)|(Y&(~Z))
H(X,Y,Z) =X^Y^Z
I(X,Y,Z)=Y^(X|(~Z))

6、第五点可以解释为什么生成的hash值中只会包含“0-F”,且不区分大小写的原因,长度为16。

1
2
3
4
5
6
7
8
9
10
11
12
function rstr2hex(input) {
var hex_tab = '0123456789abcdef',
output = '',
x,
i;
for (i = 0; i < input.length; i += 1) {
x = input.charCodeAt(i);
output += hex_tab.charAt((x >>> 4) & 0x0F) +
hex_tab.charAt(x & 0x0F); x:${input.charCodeAt(i)}, output: ${output}`);
}
return output;
}

以上代码来自 https://github.com/blueimp/JavaScript-MD5,稍有改动。

适用场景:

  • 私密数据加密,比如用户密码一般都不会明文存储,而是通过加密后存入数据库
  • 赌场开盘前将开票结果公布,开盘后通过签名对比校验是否存在作弊行为
  • 检测文件是否下载完成,比如迅雷下载

如何破解

MD5中,虽然由源文可以推导出签名,反过来,并不能由签名推导出源文。但MD5并不是坚不可摧,目前有两种破解方式

  • 碰撞法,虽然MD5签名存在2的128次方种输出结果,但每个签名对应的原文并不是唯一的,只要计算机性能够强大,给予充足的时间,总能找到能输出相同签名的数据源。
  • 映射法,把常规字符串对应的签名存储,比如常用的“123456”,“abcdefg”等。当得到MD5签名时,就可以映射出源数据。

如何防范:

  • 使用安全性更高的SHA256,并不是说SHA256不能被破解,只是相对于MD5来说算法步骤更多,也更复杂,破解难度更大。
  • 源数据 + KEY,比如“123456”加上KEY就变成了“123456@#DFF23DS”,其中“@#DFF23DS”就是服务端存储的KEY。“源数据 + KEY” => 签名。
  • 源数据 + KEY + 动态数据,KEY有可能会被猜到,如果再加上动态数据的话,破解难度会进一步提升,比如用户名、动态密码。“源数据 + KEY + 动态密码” => 签名。
  • 多次MD5,MD5(“123456”)很容易被猜到,MD5(MD5(“123456”)),将MD5后的签名再进行一次MD5呢,如果进行三次,十次,是不是破解的难度会更大,当然这么做会增加计算时间,需要权衡。
其他:
  • 中文编码需要转码,否则前端与后端编码后的值可能不一致。
  • 除了MD5算法,还存在很多其他形式的哈希函数算法,比如SHA系列,他们的设计思路大体相同。

参考资料

阮一峰讲解操作符
按位移动操作符
各种进制在线转换
维基百科MD5
维基百科SHA2
NPM MD5